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Active Learning Results

Active learning (AL) is a label-efficient framework in which the system Comparison of Experimental Architectures
incorporates information from the model being trained to optimally select * CNN, BNN1, BNN2, BNN3 all underperformed the BNN.
data to label next. While AL is important in machine learning, scaling to  BNN-1, BNN-2, BNN-3 all outperformed the BNN.
high-dimensional data and deep neural networks is a major challenge with * BNN-1 showed the best performance.

relatively scarce existing literature. We improve the memory and * Having Bayesian layers closer to the output layer captures more
computational demands of Bayesian uncertainty approaches for AL by uncertainty than having Bayesian layers closer to the input.

proposing a hybrid Bayesian and deterministic architecture able to capture * Additional Bayesian layers may actually compromise the accuracy
the uncertainty information needed for AL, and demonstrate on an image without the benefit of added uncertainty modeling.

classification challenge. ¥ = g cp a7, M) Acquisitions | BNN | BNN-1 | BNN-2 | BNN-3 | BNNI | BNN2 | BNN3 | CNN

Data To Add to training set Random 6.62% | 5.58% | 5.71% | 637 % | 6.62% | 6.44% | 6.59% | 6.90%
Label ¢* Max Ent 3.67% | 2.63% | 3.22% | 3.28% | 7.50% | 4.62% | 3.58% | 10.03%

Var Ratios | 3.56% | 2.40% | 3.00% | 3.34% | 2.70% | 2.84% | 3.32% | 6.48%

acquisition function Table 2: We compared the test error rates for our eight architectures with various hybrids of Bayesian
i a(z, M) and deterministic architectures, lower rates are better.
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Problem Setup: (a) max entropy (b) variation ratios
Data : D = {X;, y; }Y, where X cR%y; €R /\_&J\

prior : p(w) ~ N(s, E) @< q{ @ N0 Comparison of I.?:ayesolan-ness of Prior Initialization
Posterior : p(w|X, y) = ZUXwr(w) Model evidence: Qe We tuned the initial variance means of our networks for u = [-3, -5, -
' VIS Difficult t t N
ST (X)) 4m Diffiultto compute 9, -11]. Lower u values initialize the networks closer to deterministic,
Prediction : p(y*[x*, X, y) = [p(y*[x", w)p(w|X, y)dw T ,
while higher values lead to more Bayesian networks.
Variational Inference: Approximate intractable distribution p(w| X,y) with simpler distribution e Better performance with more Bayesian values of u closer to -3
q(w). .
* Having Bayesian Dense 2 is better than having Bayesian Convl.
(i.e. the BNN-1 architecture with exactly one Bayesian layer at the
Minimizing KL is equivalent to maximizing Evidence Lower Bound (ELBO) end of a fu”y deterministic network was Opt|ma|)
~ELBO =E(lol;i?$r))()) ~ logp(X) T We capture the uncertainty useful for our active learning task with
—E(log g(w)) — E(log p(w)p(X|w)) o ~. | just one Bayesian layer at the end, which is more memory and

-~ Bllogp(Xiw)) + & 1og 220 computation friendly than fully Bayesian networks.
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posterior ASUTIOUION wah g (w) = arg min g(w)p K L(g(w)|[p(w]z)) = argmin ) pE (prnr)

Acquisitions | BNN | BNN-1 | BNN-2 | BNN-3 | BNN1 | BNN2 | BNN3 | CNN

Random 6.07% | 536 % | 5.71% | 588 % | 5.93% | 5.76% | 6.56% | 6.90%
Max Ent 3289 | 2.63% | 3.15% | 2.87% | 7.50% | 4.62% | 3.44% | 10.03%
Var Ratios 274% | 2.38% | 2.69% | 2.89% | 2.710% | 2.59% | 2.97% | 6.29%

Table 3: We compared the test error rate for all eight architectures for the optimal found g, lower
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 Variation Ratios

. ) (d) variation ratios, BNN (e) variation ratios, BNN-1 (f) variation ratios, BNN1
variation-ratio [z] := 1 — max p(y|x, D)
y

Training Setup: I -
¥ of Trals: 3 + Optimier: ADAN Conclusion

* Epochs: 200 * Learning rate: 0.001 Major challenges in implementing and using Bayesian CNNs are the time

 # of Monte Carlo Samples: 100 . 7@ . epe : : : .
] | ampres: - Batch size: 64 | and computational difficulties required in training. Our results strongly
Experimental Architectures: * Initial posterior variance: oy (w) ~ N(-3,0.1)

BNN T BNNI T BNN2 T BNN3 TBNNT T BNNZ TBNN3 T CNN suggest that it is unnecessary to use fully Bayesian CNNs for capturing

Convl | Bayes Det Det Det Bayes | Bayes | Bayes | Det model uncertain ty .
Conv2 | Bayes Det Det Bayes Det Bayes | Bayes Det

Densel | Bayes | Det | Bayes | Bayes | Det | Det | Bayes | Det * Using only one or two Bayesian layers (BNN-1, BNN-2) near the output
Dense2 | Bayes | Bayes Bayes Bayes Det Det Det Det .
Table 1: Summary of combinations of Bayesian and deterministic layers in our architectures. of a network outpe rforms a fuIIy Bayesian model (BN N)

* The more Bayesian the layers are, as measured by our u value, the
) ) ) more uncertainty we can capture.
EStl m atl ng M od el U nce rta I nty Comb’mm.g deterministic CNNs accuracy and speed with Bayesian |
CNNs’ ability to capture uncertainty is useful for downstream tasks like

BNN provides a straightforward to model the uncertainty of predictions active lea rning Into an attractive hybrid architecture.

Approximate p(y = ¢) with Monte Carlo sampling, where T is the number of MC samples ¢ We hope to encourage more use of Bayesian uncertainty th rough our
Implementation:

Perform T forward passes through the network and average together the distribution over novel hybrid architecture by combining the uncertainty representation
f h : : : : :
classes for each pass of Bayesian weights with the computational parsimony of fully
p(y = c|x,D) = [ p(y = c[x, w)p(w|D)dw deterministic representations.

*

~ =c|x,w)q (W)dw
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